→ rdfs:label → "He Ion Microscope: Orion-Bu"^^xsd:string
→ dcterms:description → "The Zeiss Orion helium ion microscope has similar functionality to an electron microscope, but uses a focussed beam of helium ions in place of the electrons. The larger mass and therefore smaller de Broglie wavelength of helium ions compared to electrons means that the scanning helium ions microscope suffers less from diffraction effects than a scanning electron microscope (SEM). Since helium ions can be focused into a smaller probe size and provide a much smaller sample interaction compared to electrons, the Orion generates higher resolution images with better material contrast and 5 times improved depth of focus. The high resolution arises from the use of a finely sharpened needle and a process that strips individual atoms away from the source until an atomic pyramid is created with just three atoms at the very end of the source tip. The Orion achieves a resolution of less than 0.9nm at an energy of 25-30kV and can deliver beam currents between 1fA and 25pA."^^xsd:string
→ skos:notation → "E10258"^^http://id.southampton.ac.uk/ns/equipment-code-scheme
→ rdfs:comment → "The Zeiss Orion helium ion microscope has similar functionality to an electron microscope, but uses a focussed beam of helium ions in place of the electrons. The larger mass and therefore smaller de Broglie wavelength of helium ions compared to electrons means that the scanning helium ions microscope suffers less from diffraction effects than a scanning electron microscope (SEM). Since helium ions can be focused into a smaller probe size and provide a much smaller sample interaction compared to electrons, the Orion generates higher resolution images with better material contrast and 5 times improved depth of focus. The high resolution arises from the use of a finely sharpened needle and a process that strips individual atoms away from the source until an atomic pyramid is created with just three atoms at the very end of the source tip. The Orion achieves a resolution of less than 0.9nm at an energy of 25-30kV and can deliver beam currents between 1fA and 25pA."^^xsd:string
→ dc:description → "The Zeiss Orion helium ion microscope has similar functionality to an electron microscope, but uses a focussed beam of helium ions in place of the electrons. The larger mass and therefore smaller de Broglie wavelength of helium ions compared to electrons means that the scanning helium ions microscope suffers less from diffraction effects than a scanning electron microscope (SEM). Since helium ions can be focused into a smaller probe size and provide a much smaller sample interaction compared to electrons, the Orion generates higher resolution images with better material contrast and 5 times improved depth of focus. The high resolution arises from the use of a finely sharpened needle and a process that strips individual atoms away from the source until an atomic pyramid is created with just three atoms at the very end of the source tip. The Orion achieves a resolution of less than 0.9nm at an energy of 25-30kV and can deliver beam currents between 1fA and 25pA."^^xsd:string
→ rdfs:label → "University of Southampton"^^xsd:string
→ rdfs:label → "School of Electronics & Computer Science"^^xsd:string
→ rdfs:label → "Physical Sciences and Engineering"^^xsd:string
→ rdfs:label → "Clean Rooms - Nanofabrication"^^xsd:string